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Electromagnetic Dyadic Green’s Function
in Cylindrically Multilayered Media

Zhonggui Xiang and Yilong Lu, Member. IEEE

Abstract—A spectral-domain dyadic Green’s function for elec-
tromagnetic fields in cylindrically multilayered media with circu-
lar cross section is derived in terms of matrices of the cylindrical
vector wave functions. Some useful concepts, such as the effective
plane wave reflection and transmission coefficients, are extended
in the present spectral domain eigenfunction expansion. The
coupling coefficient matrices of the scattering dyadic Green’s
functions are given by applying the principle of scattering super-
position. The general solution has been applied to the case of axial
symmetry (n =0, n is eigenvaiue parameter in ¢ direction) where
the scattering coefficients are decoupled between TM and TE
waves. Two specific geometries, i.e., two- and three-layered media
that are frequently employed to model the practical problems are
considered in detail, and the coupling coefficient matrices of their
dyadic Green’s functions are given, respectively.

1. INTRODUCTION

HE dyadic Green’s function (DGF) technique has been

widely used to investigate the electromagnetic waves
[1]-[5] for more than 20 years. Although only in a few simple
geometries can the dyadic Green's functions be obtained in
closed form, the compact formulations and solutions of some
electromagnetic problems they offer make their use extremely
attractive. The dyadic Green’s functions of canonical prob-
lems may be constructed in several ways. One of the most
common approaches is to express the Green’s functions in
terms of a magnetic vector potential [5]—[8], whereas another
approach is to construct the Green’s function from a set of
appropriate electric and magnetic vector potentials [9]-[11]. Of
the constructing approaches, the vector wave function (VWF)
approach is more widely employed to generate dyadic Green’s
functions [1]-[4], [12], [13].

Many scholars are interested in the research on the dyadic
Green’s functions in layered media. Among the research work,
the dyadic Green’s function constructed for planarly stratified
media is the most well developed at present. The planarly
multilayered media, such as the planarly stratified and isotropic
medium [1]-[4]. [14], [15], the slow-variation multilayered
medium [16]. the multilayered anisotropic medium [17], and
the multilayered chiral medium investigated recently [18] have
been applied by many researchers to model the physical
geometries of practical engineering problems.

The dyadic Green’s functions for spherically multilayered
media have also received increased interest. The DGF’s for
some simple spherical geometry and for the inhomogeneous
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spherical lenses were presented earlier in [1], {4]. More
recently, the investigation of the dyadic Green’s function
has been extended to media of more complicated spherical
multilayered geometries [19]-[22].

The electromagnetic waves in cylindrically multilayered
media have been investigated by many researchers [1]-[5].
[23]-[25]. Unlike the waves in the planarly and spherically
stratified media, the waves in the cylindrically multilayered
media are usually coupled not only between TM modes and
between TE modes, but also between TM and TE modes.
Although the dyadic Green’s function for cylindrically multi-
layered media was investigated by some researchers to a great
extent [1], [2], [4], [23]. [24], [26]. the general expression
of the dyadic Green's function for the electromagnetic fields
in an arbitrary multilayered media with circular cross section
has not been reported except under the condition that the
problems under consideration are either rotationally symmetric
(n = 0) or when the field is a two-dimensional one, being
independent of the longitudinal axis (9/0z = 0). Many
complex practical problems require a large number of layers
to model the propagation environment and/or scatters. For
example, in optical fibers the doping of the fiber may have
a gradual transition rather than a step transition. Such a
gradual transition may be modeled with many thin layers of
piecewise homogeneous layers. In the geophysical exploration
of the subsurface earth, a bore hole drilled deep into the earth
is often employed. Such bore holes are usually filled with
fluid. The subsequent invasion of bore-hole fluid into the rock
formation gives rise to an altered zone whose electromagnetic
property varies radially away from the bore hole. In reducing
the radar scattering cross section by the inlets of aircrafts,
we usually coat the inlets with multilayered materials to
improve and control the scattering properties [25], [27]. Such
kinds of practical engineering problems may be modeled by a
cylindrically stratified media. It will be very useful, therefore,
to produce a general expression of dyadic Green’s function in
a cylindrically multilayered media with circular cross section.

In this paper, a rigorous formulation of dyadic Green's
function for the problem of electromagnetic radiation from a
point source of excitation embedded in an arbitrary layer of the
circular cylindrically multilayered media is presented in terms
of matrices of the cylindrical VWF. Some useful concepts
such as the effective plane wave reflection and transmis-
sion coefficients are extended in the present spectral domain
eigenfunction expansion. The recursive matrices of coupling
coefficients for the scattering dyadic Green’s functions are de-
rived by applying the principle of scattering superposition. The
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Geometry of a cylindrical multilayered medium.

Fig. 1.

general solution has been applied to the case of axial symmetry
(n = 0) where the scattering coefficients are decoupled. The
other two specific cases of two- and three-layered media are
also considered in particular as examples, assuming the current
source is located in various layers of the medium.

II. FORMULATION OF THE PROBLEM

Consider a circular cylindrically multitayered lossy or loss-
less medium of L layers, as shown in Fig. 1. The electro-
magnetic radiation fields, £, and H, in the pth layer (p =
1,2,..., L), contributed by the electric and magnetic current
sources J, and M, lying in the gth layer (¢ = 1,2,---, L),
are given by

VxVxE,
VxVxH,

— ki Ep = iwp, Jp61 — (V x Mp)62 (1)
— k3 Hp = iwe, Mp62 + (V x J,)82  (2)

where €, and u,, are the complex permittivity and permeability,
and k, = w,/ji,€, is the wave number in the lossy or lossless
medium of the pth stratified layer, respectively. 6] stands for
the Kronecker delta. A time dependence exp(—iwt) is assumed
for the fields throughout this paper.

According to the duality and the superposition of elec-
tromagnetic fields, only the electric type of dyadic Green’s
function due to an electric current source needs to be solved
in order to avoid unnecessary repetition. The magnetic type of
dyadic Green’s function can be easily obtained according to
duality principle. The general formulation for the electric field
E, excited by an electric current source J, can be given by

E,(R) = iwu, / / / GrORR) I (R

where the V, is the volume occupied by the sources embedded
in the gth layer, R stands for the field point, (r, ¢, 2), and &

Ndv' @)

the source point, (', ¢', z'). Substituting (3) into (1) yields

=, P = —_ = = J— p—
VxVxGP)(RE)-kG*)(R,R) = T6(R-R )5 @
where T is the unit dyadic and 6(R — R) the Dirac delta func-
tion. The electric type of dyadic Green’s function G*? (R, &)
satisfies the following boundary conditions at the circular
cylindrical interfaces r = a;({ = 1,2,---,L — 1)

P x ﬁgpq) —Fx 6[6(11-1-1)‘1] (5)

Lixvx G = — 7 x V x Glrthal - (g)
Hp Hp+1

The magnetic fields H, due to the excitation of electric
current source J, can be found from Maxwell’s functions as

H,(R) = ///VXG(’"I)RR) LBy av. ()

The solutions to the electromagnetic fields due to the
excitation of a magnetic current distribution M, can be easily
obtained by following the similar procedure as due to the
excitation of an electric current source J,. Therefore, only
the electric type of dyadic Green’s function will be presented
in this paper.

III. GENERAL EXPRESSION OF DYADIC GREEN’S FUNCTION

As mentioned above, several approaches may be employed
to construct the electromagnetic dyadic Green’s functions in
the stratified media. In this paper, we will use the vector wave
function expansion to derive the dyadic Green’s function in
the circular cylindrically L-layered medium.

From (1) and/or (2), we can obtain the scalar eigenfunctions
given by

Ye,(h) =

where Z,(nr) is a general cylinder function (including
Jn,Nn,Hr(Ll), and H, (2 )) of order n, and 7 the propagation

Zn(r) o+ (ng) exp(ih) ®

constant in r direction with k2 = 7? + h2. The vector
eigenfunctions can be constructed by
L, (h) = Ve, (h) ©)
M, (h) =V x [e, (h)3] (10)
1 5
Ngn(h):EVxV X [¢§n(h)z] (11

and the notation used here follows that in [1]. The group of
equations given above can be written more explicitly using
(8) as

[dZ,,(nr) cos

) sin o

_ . nZy(nr
Le,(h)= Tdr sin (ng)i F ———  (1)¢
+ thZ, (nr) (nqﬁ)z} exp(zhz) (12)
Mo, ()= | 2l 5
- L T("T) n ;b)éb] exp(ihz) (13)
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. dZ,(nr) cos R @ sin .
Ni"(h) B k = dr  sin ()7 ¥ Zn(r) cos (nd)¢
+ 7227, (nr) (nqﬁ)z} exp(thz). (14)

For the geometry shown in Fig. 1, an incoming wave is
always totally reflected at the origin resulting in standing wave
so that there exist only two types of waves—standing wave
and outgoing wave, which can be represented by J,, and Hfbl),
respectively. The vector wave functions in (12)~(14) have been
verified [1] to be orthogonal among themselves as well as with
respect to each other, as they are integrated over all the values
of r,¢, and z. The expansion of vector wave functions in
terms of J, and H ,(Ll) functions has actual physical meaning
and is advantageous compared with the usual expansion in
orthogonal function pairs (Jn. N,,) or (Hp W H (2)) We can
use those cylindrical vector wave functlons to construct the
desired dyadic Green’s function.

According to the principle of scattering superposition, the
dyadic Green’s function can be considered as the Superp0s1t10n
of G.o(R,R) (an unbounded DGF) and G(pq)(R R) (a
scattering DGF). Geo(R, R) corresponds to the contribution
of the direct waves from rad1at10n sources in the infinite homo-
geneous space and Gg’f) RE ) to the additional contribution
of the multiple reflection and transmission waves due to the
presence of dielectric interfaces. The complete dyadic Green’s
function, G¥9) (R, R ), is therefore given by

GrRR)=GoR R+ GE(RTE) (15
where the superscript (pg) denotes the layers in which the
field point R and source point 7 locate, respectively, and the
subscript s means the scattering dyadic Green s functions.

The dyadic Green’s function Go(R. R ) in the unbounded
medium is given in Tai’s well-known book [1] by using the
contour integration in the complex 7n-plane as a result of the
residue theorem, as follows:

Go(RR) = ga(ﬁ ~R)+ é /_ﬂo

MM + NON' | 1f7~>7~

Me M“) +N N<1), if <’
(16)

where simplified notations (throughout the paper) M <y

Mgn(h)ﬂM(Zl; = M(g:)(h)M’g = Me (1), and M (1’
M ,3(}7)( —h) stand for the electric field of the TE mode, whlle
Ne, = Ne,(h), N(l) = N“’(h) Ne, = Ne (=h),
and N (1) = NW ( h) represent that of the TM mode.
The prlme denotes the coordinates (', ¢’,z’) of the current
source J (R ), n identifies the eigenvalue parameter, and g
the Kronecker delta function defined with respect to n. H,(Ll)
should be chosen for Z,, if vector wave function has the

superscript (1); otherwise, J,, should be chosen for Z,, in the
expression of the cylindrical vector wave functions.

As discussed above, the electromagnetic fields in the geom-
etry we consider consist of the radial standing wave modes
and outgoing wave modes. It is this important feature that
facilitates greatly to simplify the eigenfunction expansion of
the new dyadic Green’s function by using the cylinder vector
wave functions only in terms of J, and H,(ll) functions.
Assuming that the current source is located in the ¢th layer,
we may construct the scattering dyadic Green’s function for
the pth layer (p = 1,2,---, L) as follows:

G®)(R,R)

; “+o0 [e’s}
i 2 — 6o
== dh
( T
x{[Ne, Mc, - A% - [Ne, M., |
ity WO M
7 " o"q
(1) 1) 1, 7@pd) -
[NOWP Monr] n(10) [Ng Monq]
(1 (L 7. 759 1) A, (1)
+ING Mo 1D IN ) M T ()

where ATD, BED CEO | and DI, (p.g = 1,2, L)
are the matrices of order 2 X 2 and stand for the coefficient
matrices of the scattering dyadic Green’s function to be solved.
The subscript n means that all of them are the functions with
respect to n. and the subscripts (00), (01). (10), and (11)
describe the characteristics that the left-side number and the
right-side number stand for the operation on the field and the
source coordinates, respectively. Moreover, the numbers 0 and
1 require that the Bessel and Hankel functions of the first kind,
J, and H,(f), should be chosen for the cylinder function Z,
in the vector wave functions, respectively. The superscript T’
denotes the transposition of matrices and L the number of the
layers of the cylindrical medium. Those coefficient matrices
of order 2 x 2 can be given more explicitly by

z(m) _ Ag\’}}]\; Ag\z;}]x)l (pa) _ Bz(\l;?\? BI(\JJJ;Z\){
o=l ) ) Bt = (o ol
o, ~(G 98, oo, (2 20
" TA\CER O rOD T \DER DY
(18)

where all the elements in the matrices above stand for the
scattering coefficients of the scattering dyadic Green’s function
to be solved. The diagonal terms of the matrices above denote
the self-coupling of the wave. that i3, TM to TM or TE to TE
coupling. But the off-diagonal terms of those matrices denote
the coupling from the TE to TM, and the TM to TE waves.

All the coefficient matrices of the dyadic Green’s function
can be defined from the boundary conditions given in (5) and
(6). In order to avoid more complicated operation, some con-
cepts of the effective plane wave reflection and transmission
are applied and extended for our problems. The final solutions
to those scattering coefficient matrices of the dyadic Green’s
function can be derived as follows:

-Aizp(%)O) “ﬁp,p+1 ' (7 - ﬁm%l 'Ep‘erl)_l 'qu”
. (T — Rq’q_pl . Eq,q—l)#lU(p - q)
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+ T - j?
+ (T - Ry ppt1)”
) (I - Rq,q+1 : Rq,q—l)

b:ll? Sl

! ~qu
: Rq7q+1U(q —-p)

(19)

By =

Hll

Rp,pﬂ ! (T - Rp,p 1 Rp,p+1) . qp

q,q+1U(q p)
(21)

+hp:o 1 (I Rp,p+1 Rp,p 1) I'qu
(I Rq,q 1 Rq1)” U(q—p)

where the step function U(z) is defined by

(22)

17 x > 07

2
z <0. (23)
R and T are the generalized reflection and transmission
coefficient matrices, respectively, and can be derived by a set
of recursive formulations as follows:

Rpp-1=Rpp-1+Tp-1p  Bp_1p-2

’ (T - Ep—lm ‘:Rp~1,p—2)_1 ’Tp,p—l 24)

ﬁp,p+1 = Rp,p-lrl + Tp+l,p ‘§p+1,p+2
(T RP’H-P ﬁp+1,p+2)_1 'Tp,erl (25)
Ty = ~Qr-1,0 - Qr-gr-1 Qu2 (26)
Tp1 = -Qrp-1"Qr-1,1-2" " @ @7
Qppr1 =T~ Boprp Bpprpr2) ™ Topss  (28)
Z\?—p,p—l = (T - Ep—l,p ‘ﬁp—l,p—Q)_l 'Tp,p—l 29

where p = 1,2,---, L. Note that Ry, r+1 = 0, and Ry =
0. The R and T are the local reflection and transmission
coefficient matrices. At the pth interface of the medium, those
2 x 2 coefficient matrices are given by

= [_jn(npa'p)Hr(Ll) (np+1ap)
- Hsbl)‘(np+1ap)t]n(77pap)]_l
’ ‘[ngl)("?p+1afp)H1sl)(77pap)

Rp,p+1

- Fﬁl)(np%)Hﬁ”(npﬂ%)l
[jn(npap)Hr(ul)(np-l-lap)

- Hg) (np—l—lap)‘]rn(npap)]_l
) [7n(77p+1“p)=]n(77pap)

- 7n("7pap)*]n(77p+1ap)]

2w — 3
[Jn (npap)Hr(zl) (Tlp+1ap)

2
7!'7’]p ap

- Fgl)(np+1ap)=jrn(77pap)]_l ' (6(;;

(30)

Rp+1,p

]

@1

)
—Hp

(32)

3

P+l =

— 2w

Tpy1p = [7n(77pap)H7(zl)("7p+lap)

2
Tyt 1Gp

— H (mp410p) Jn(npay)]

. (5p+1 0 )
0 “Hp+l

where a;(l = 1,2,---,L - 1) denotes the radius of the Ith
layer, and the J,, and H,, the 2 x 2 matrices defined in the
form as follows:

B(r) = - |

-1

(33)

iwepnpr By, (Mpr)

—nhByp(npr)
—nhBn(n,r)

—iwpnpT By, (npr)
(34)

where B,, is either Hr(bl) or J, depending on whether we are
defining the FS) matrix or the J,, matrix, and the prime, the
derivative, operates with respect to the whole variable of the
relevant functions. Moreover, B,, is diagonal when n = 0.
So far, the general expressions of the scattering dyadic
Green’s functions for the cylindrical arbitrary multilayered
media with circular cross section have been obtained. In order
to show how to simplify the general expressions for some
specific cases, we will consider the dyadic Green’s functions
for the the case of axial symmetry (n = 0), as well as two
specific geometries, i.e., two- and three-layered media that are
frequently employed to model the practical problems.

IV. SPECIFIC DGF’S FOR SEVERAL SPECIAL CASES

The general dyadic Green’s function in cylindrically multi-
layered media is given by (15) The mathematical expression
of unbounded DGF, G(R, R) remains unchanged for the
layer where the source is located only if we replace the
propagation constant k and the radial propagation constant 7 in
(16) by those of the source layer. The dyadic Green’s functions
can be easily given if the scattering term GEV(R, R) is
obtained. Therefore, we consider only the scattering dyadic
Green’s functions, as well as their coefficients or coefficient
matrices, for those special cases.

A. The Case of Axial Symmertry (n = 0)

From the fact that B, is diagonal when n = 0, we
can easily know that all the reflection and transmis-
sion matrices, R, R, T and T, are diagonal. Furthermore,

Aff’(%)o),Bflp(%)l),C;p(ql)O) and Dgﬁql)l) are also diagonal, that is,

At A B B, .00, DY, wa DY, a
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equal to zero. This fact implies that the TM and TE waves
are decoupled. Therefore, TM and TE waves can be treated
independently of each other, implying a scalar problem In

this case. the scattering dyadic Green’s function G P 9 in a7
can be simplified as follows:

+oo _
87 J oo np

A M,

QPR R) = x {AYUN, N

q

+BEIN., N

o”q

o']q

+ B M, MS) + CRRNG) N

+ D(PQ)N(l) N/ (1)

olp 07741

(35)

rogn MY m,

o w0
where the subscript NN and MM denote the scattering
coefficients of TM wave and TE wave, respectively. All the
scattering coefficients in (35) can be obtained from (19) to (22)
only by taking a set of replacements: T—1,R — RE By Or
RPZ"R” 1 — RFl or RFZ7T” i TPl or TPl’TZ l+1 —
TFl or Tf, Ry, A RPl or RstRll 1 RFZ or
RFl,T” v > TE or T, Ty — TE or TH. (I =
1,2,---, L), where the superscript £ and H mean for TM
and TE waves, the subscript P and £ mean the centripetal
and centrifugal reflection or transmission, respectively, and
the similar replacements are done from (24) to (33). All the
local reflection and transmission coefficients are given by

— Pt 17T Hpp My i1, = o1 Hp 1,5

H
Hep = tip+17p Hpt1,pTpp — bpp 41 Tpp Moy e
pH _ tp+ 10 Tpp Tyr1,p — Hpp+1Tp1 0 Tpp (37)

T2 p a1y Hpa1 p T — tippr1 Tpp Ho i1
B _ €p+177pprH;>+l,p — 61077p+1H10+1~PH;>11> (38)
Fr Ept1Mp Hpr1.0Tpp — epnp+1‘7ppH;+1’P
E _ e+ 1pTpp Tyt = o1 Tp410T5p (39)
P epimpHp i1 2 Tpp — M1 TppHp 1,
3,
_ =2 Mp+1
(mnpap)(pip17pHp1,p Ty, — Hptipr1Tpp M 41,p)
(40)
Ty
*ZWMI%
(7”7p+lap)(ﬂp+177pHp+1,P pp /’LP'7P+1‘7”’ p+1.p)
(41)

TE,

B —21€pMp41
(Tnpap)(ept17ipHp+1,5T5p = ptlpt1Tpp Hp 1)
(42)

T¢,

27;6p+177p
(Tp+10p) (€t 1M Hpt1,p 1;11 -

€plp+1 jppH;:+1,p)
43)

where Hy = HS(nwar),Hy = HO(I)(nkaﬁvjkl =
Jo(nkal),j,é, = J;(ﬁkal), and p = 1,27"-7L. RL,L+1 =
Rip = 0. Note that the prime operates with respect to the
whole variable of the relevant functions. From the group of
equations given above, we can easily obtain the scattering
coefficients of the dyadic Green’s function for the case of
axial symmetry.

B. Two Specific Geometries

In order to obtain the specific scattering DGF’s of the
cylindrically two-, and three-layered media, we only substitute
the special values of g and L into (17) and letp = 1,2,---, L,
respectively. At the same time, we consider, in particular, the
case of axial symmetry (n = 0).

1) Cylindrically Two-Layered Media: The geometry of the
cylindrically two-layered media can be considered as a single
cylinder in an unbounded homogeneous medium. When the
current source is located in the different layer of the media,
we can obtain a different expression of the dyadic Green’s
function. Therefore. we should consider two cases of the
current source. which is located either in the first layer or
in the second layer.

a) Current source located inside the cylinder: In this case,
the scattering DGF can be simplified from (17) as follows:

;[T 250
8#[ hz

_(11) _
. (RR)=

=(12) — — i [T SN2— 6 1) ap(1)
G (RH) =g [ an > P v M) )

where Ry and T, can be given by letting p = 1 in (30) and
(32) with n? = kZ — A% and k? = w2l = 1,2).
When n = 0, we can simplify (33) as

=(11) . _, i [T 2-6 (11) /
G BR) = [ it AN N
+ ATy M e, M, ) (46)
=(21) _ _, it 26 (21) ar(1) wp
G.. (R,R):g/ dh=5= x {ORYNE) N
+ CJ<\/2[§L>IM ) wMe, ) (47)
where Ag\%\z = ngl,Agﬁaj = REI,CJ(\?}V? = TF, and

¢ = rH REH and THH can be obtained from (36),
(38), (40), and (42) by letting p = 1.

b) Current source located outside the cylinder: If the source
is located outside the cylinder, the scattering DGF is given by

=12) — 1

— Foo -6
Ges (R’R):8_7r/ dh’z ,,71 ° X{[ M?,Th]
- n=0
To - INE), MO (48)
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=) — i (T SN2 1) a0
G BE)= 87/_00 Ay ot (NG M) )
n=0
BN D T
Ry [NgmaMgm] } (49)
where Ra1 and T can be given by letting p = 1 in (31) and
(33), respectively. When n = 0, (35) can be simplified as

=02 = 1 [T 26 Ly '
G, (R,R)_g/ dh—m= *{Byw N, Ne |

—o0

12 (1
+ By Me, M<))

—=(22) _ _ A
G.. BH) = |

(50)

24 -
dh=—5= > x {DYYNY) NS

8n o 5 o2
(22) pr(1) pr'(1)
+ Dy M) M &)y (51)
where Dya = RE,, D) = RE BUY - TE and

B% = TE. REH and TE can be obtained from (37),
(39), (41), and (43) by letting p = 1.

2) Cylindrically Three-Layered Media: The geometry of
the cylindrically three-layered medium is considered a single
cylinder with a coating layer superimposed by an unbounded
homogeneous medium. The current distribution can be located
in any one of the three layers, and the scattering DGF for
each layer is presented.

a) Current source lying inside the cylinder: In this case,
g=1and L = 3. We can let p = 1, 2, or 3 to obtain the
scattering DGF in each layer from the general expression (17)
of the scattering DFG as follows:

=(11) _ i [T 22— 6
G BE) = [ any 20 (i, )
—oo n=0
- / y T
‘Riz-[Ne, .M. 17} (52)

=) — = d Foo — 2 — 6 ! 1)
G.. (R,R)__g/oo th—n% xA{INe, M, ]

n=0
‘Rog - (I — Ray - Roz)™' Ty
’ /T
VY, M 1)
=(31) _ i [t
G, (R,R ::g/

— 00

(53)

o~ 2— o 1) pp)

" X {IN%,  Me) ]
n=0

Ty [Ne, , M, 1"} (54)

where Rya, Ra1, Ros, T1z, and Tig is given from (24) to

(29). When n = 0, the scattering DGF’s can be simplified

as follows:

=1 _ . [To 9.4 11) /
Ges (R,R) :gr‘\/_oo dh_q»’? X {ANNNS'IlNgﬂl

11
+ AE\/IJ\)/IMgmM%m}

(35)

—1) _ _, Z +oo 2 -4
. RE)=g. [ X (AR, N,
+ A M e Me, +CYUNY) N

o M2 o™

(56)

n
+oCO MO M.
o'z

oM

=(31) __ . ; ~+o0 _
Gis )(R, R’) — SL/ dh.2_50 % {CJ(\«;’JI\[)N(elzlSN/e

31 1
+ M) M, ) (57)
where

RE,TETE 21 RE
A%2=R1€1+ P2-PL_FL AEVAZZ__H___

1- R%Rf:fq 1 - RE RE,
Ag\lllﬂ)/l :Rgl + Rngng}i Aﬁ%\)/l — _El%_

1- RERE, 1 - RE, RE,
oty - Th oy _ _ThTh

1 - RE RE, 1 - RE,RE,

C(yzl) _ TFI:Il oGy _ TI%TFI?Z (58)

MM — 71 pH pH MM — 7 _ pH pH
1- Ri R, 1 - RE RE,

b) Current source lying in the coated layer: To save the
space, we only give the scattering DGF’s for each layer by
Letting n = 0. In case of n # 0, the scattering DGF’s can
be obtained by following a similar procedure and by carrying
out some more repeat derivation. From (35), letting p = 1,
2, or 3 yields

=012 — — i [t®  2_§
G (R,R):§/_w A (AN, N,

+A§\1421\)/1M3771MI§ 2 +BI(\}12\2N§?71N18(1)

o2

(59

n
12 (1
+B§\“)4M5MM§(W)2}

=(22) . ) oo 2 — by (22) ,
G,, (R,R)zg/_oo dh 7 X {AGYN e, N,
(22) / (22) (1)
+ AM]VIM(c;1,]2]|lg172 + BNNNﬁmNgnz
(22) '), 22 @) A
+ByuMe, MS) + ONYNG) Ne
+ M) M.+ DGING) N

o2

+ DM My (60)

n o2

=B32) — — i [T 24§ (32) Ar(1) A7
G, (R’R):_ﬂ'/_oo dh_g X{CNNNgmNgnz
7

O, + DN

oMz

+DiME) M) ) 61)
where

R TR
1- RFlRPZ 1- RFIRP2
1- RFIRPZ 1- RFIRPZ
AGN = _}?52—E" AT = *’R—EZ—H
, 1- RFIRP2 1- RFlRP2
1- Rg R, 1— Ry Rp,
1 _RF].RPZ 1 _RFlRP2

D) _ RE, Dz(\%\)/z — Rf)

NN — 1 _ pE pE 1 _ pH pH
¥ 1-RERE, 1 - RE RE,
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2 T
0(3 2) _ 2 B2 _ F2
I=RERE, M ToRE
D(Sz) — TFlegl D(32) TI%R (62)
NN I_RE1R1€2’ MM — RHE R

¢) Current source lying outside the coated layer: When the
source is located outside the coated layer, the scattering DGF’s
for n = 0 is given by

—=(13) — _ Foo 9
G,. (RR)=2 dh x {BYNNe, N
81 771 oM™ g
13
gMgMe M} (63)
__(23) —

ol
=
=

Ty [T i BN, N
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+ DM (JQZM o '} (64)
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where
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B = B =
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D23 RE\TE, D3 _ RE. 4 RE T TH,
NN (1-RERE) TN TR RE RE,
RETE RE H
D3 _ Fiop2_ - p3) _ pH + 1 lroTpy
MM (1 RFlRII;IQ)Q MM F2 — Rlep2
(66)

Up to now, all the scattering DGF’s for several specific
cases have been given in detail. The results for the specific
cases agree with those given by other researchers, showing
the validity of our new expression of DGF. Our expression.
however, is more general and can be applied to more compli-
cated problems with any number of cylindrically multilayered
lossless or lossy media.

V. CONCLUSION

As a very powerful and elegant method for solving the
boundary-value problems, the dyadic Green’s function tech-
nique has been well developed and employed for more than
two decades. As mentioned above, the dyadic Green’s function
for the planarly stratified media has been well investigated
by many researchers, and the general expressions of those
functions have been given in detail. The DGF’s for the
spherically stratified media have also been investigated, and
the general expressions have been presented recently. Al-
though several simple geometries of the cylindrically stratified
media extracted from practical engineering problems have
been investigated, it is very useful to construct the general for-
mulation of dyadic Green’s functions for arbitrary multilayered
cylindrical media.

In this paper, the general expression of the DGF for cylin-
drically multilayered media has been derived. Some concepts,
such as the effective reflection and transmission of plane
waves, are used and extended to derive the scattering coeffi-
cient matrices, Several specific cases, i.e., axial symmetry (n =
0). two-layered and three-layered media, are considered in
detail. Because of the duality and the superposition principle,
the magnetic type of DGI’s can been derived easily by
the replacements ¥ — H.H — —-E.J — MM —
—J, i — €, — . Therefore, only the electric type of
dyadic Green’s functions are analyzed. In order to check the
general formulation we have derived, the scattering DGF’s
for several special cases have been obtained by simplifying
the general expression of DGF’s. The agreement between the
results for the specific cases derived in this paper and the ones
given by other researchers has demonstrated the validity of
our approach. However, our expression is more general and
can be applied to much more complicated problems. Our new
expression is more general and can be applied to problems
with any number of cylindrically multilayered lossless or lossy
media.
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