
614 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 44. NO. 4, APRIL 1996

Electromagnetic Dyadic Green’s Function

in Cylindrically Multilayered Media
Zhonggui Xiang and Yilong Lu, Member, IEEE

Abstract—A spectral-domain dyadic Green’s function for elec-
tromagnetic fields in cylindrically multilayered media with circu-
lar cross section is derived in terms of matrices of the cylindrical

vector wave functions. Some useful concepts, such as the effective
plane wave reflection and transmission coefficients, are extended
in the present spectral domain eigenfunction expansion. The

coupling coefficient matrices of the scattering dyadic Green’s
functions are given by applying the principle of scattering super-
position. The general solution has been applied to the case of axial

symmetry (n =0, n is eigenvalue parameter in 4 dheetion) where
the scattering coefficients are decoupled between TM and TE
waves. Two specific geometries, i.e., two- and three-layered media

that are frequently employed to model the practical problems are
considered in detail, and the coupling coefficient matrices of their
dyadic Green’s functions are given, respectively.

I. INTRODUCTION

T HE dyadic Green’s function (DGF) technique has been

widely used to investigate the electromagnetic waves

[ 1]-[5] for more than 20 years, Although only in a few simple

geometries can the dyadic Green’s functions be obtained in

closed form, the compact formulations and solutions of some

electromagnetic problems they offer make their use extremely

attractive. The dyadic Green’s functions of canonical prob-

lems may be constructed in several ways. One of the most

common approaches is to express the Green’s functions in

terms of a magnetic vector potential [5]–[8], whereas another

approach is to construct the Green’s function from a set of

appropriate electric and magnetic vector potentials [9]–[ 11]. Of

the constructing approaches, the vector wave function (VWF)

approach is more widely employed to generate dyadic Green’s

functions [1]-[4], [12], [13].

Many scholars are interested in the research on the dyadic

Green’s functions in layered media. Among the research work.

the dyadic Green’s function constructed for planarly stratified

media is the most well developed at present. The planarly

multilayered media, such as the planarly stratified and isotropic

medium [1 ]–[4]. [14], [15], the slow-variation multilayered

medium [16], the multilayered anisotropic medium [17], and
the multilayered chiral medium investigated recently [18] have

been applied by many researchers to model the physical

geometries of practical engineering problems.

The dyadic Green’s functions for spherically multilayered

media have also received increased interest. The DGF’s for

some simple spherical geometry and for the inhomogeneous
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spherical lenses were presented earlier in [1], [4]. More

recently, the investigation of the dyadic Green’s function

has been extended to media of more complicated spherical

multilayered geometries [ 19]–[22].

The electromagnetic waves in cylindrically multilayered

media have been investigated by many researchers [1]–[5],

[23] -[25]. Unlike the waves in the planarly and spherically

stratified media, the waves in the cylindrically multilayered

media are usually coupled not only between TM modes and

between TE modes, but also between TM and TE modes.

Although the dyadic Green’s function for cylindrically multi-

layered media was investigated by some researchers to a great

extent [1], [2], [4], [23], [24], [26], the general expression

of the dyadic Green’s function for the electromagnetic fields

in an arbitrary multilayered media with circular cross section

has not been reported except under the condition that the

problems under consideration are either rotationally symmetric

(n = O) or when the field is a two-dimensional one, being

independent of the longitudinal axis (d/i3z = O). Many

complex practical problems require a large number of layers

to model the propagation environment and/or scatters. For

example, in optical fibers the doping of the fiber may have

a gradual transition rather than a step transition. Such a

gradual transition may be modeled with many thin layers of

piecewise homogeneous layers, In the geophysical exploration

of the subsurface earth, a bore hole drilled deep into the earth

is often employed. Such bore holes are usually filled with

fluid. The subsequent invasion of bore-hole fluid into the rock

formation gives rise to an altered zone whose electromagnetic

property varies radially away from the bore hole, In reducing

the radar scattering cross section by the inlets of aircrafts,

we usually coat the inlets with multilayered materials to

improve and control the scattering properties [25], [27]. Such

kinds of practical engineering problems may be modeled by a

cylindrically stratified media. It will be very useful, therefore,

to produce a general expression of dyadic Green’s function in

a cylindrically multilayered media with circular cross section.
In this paper, a rigorous formulation of dyadic Green’s

function for the problem of electromagnetic radiation from a

point source of excitation embedded in an arbitrary layer of the

circular cylindrically multilayered media is presented in terms

of matrices of the cylindrical VWF. Some useful concepts

such as the effective plane wave reflection and transmis-

sion coefficients are extended in the present spectral domain

eigenfunction expansion. The recursive matrices of coupling

coefficients for the scattering dyadic Green’s functions are de-

rived by applying the principle of scattering superposition. The
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Fig. 1. Geometry of a cylindrical multilayered medium.

general solution has been applied to the case of axial symmetry

(n = O) where the scattering coefficients are decoupled. The

other two specific cases of two- and three-layered media are

also considered in particular as examples, assuming the current

source is located in various layers of the medium.

II. FORMULATION OF THE PROBLEM

Consider a circular cylindrically multilayered lossy or loss-

less medium c~f L layers, as shown in Fig. 1. The electro-

magnetic radiation fields, 17P and HP in the pth layer (yJ =

1,2,... , L), ccmtributed by the electric and magnetic current

sources Jq and ikfg lying in the qth layer (q = 1,2, 0... L),

are given by

V x V x Ep – k;Ep = iwppJp6; – (V X kfp)d; (1)

V x v x Hp – k;Hp = iw6pMp8; + (V X JP)8; (2)

where CP and p:P are the complex permittivity and permeability,

and kP = w~p~ is the wave number in the lossy or lossless

medium of the pth stratified layer, respectively. ii; stands for

the Kronecker delta. A time dependence exp( –id) is assumed

for the fields throughout this paper.

According to the duality and the superposition of elec-

tromagnetic fields, only the electric type of dyadic Green’s

function due tc) an electric current source needs to be solved

in order to avoid unnecessary repetition. The magnetic type of

dyadic Green’s function can be easily obtained according to

duality principle. The general formulation for the electric field

13P excited by an electric current source Jq can be given by

Ep(@ ❑= iW/.Lp//1=9)(~,~’).J@) W’ (3)

v,

where the Vq is the volume occupied by the sources embedded

in the ath layer, R stands for the field r)oint. (r. d. z). and ~’

the source point, (r-’, @’, /). Substituting (3) into (1) yields

V x V x@)(~,~’) –k;@(~,~’) = ~d(R–~’)d; (4)

—

where ~ is the unit dyadic and 6 (R – ~’) the Dirac delta func-

tion. The electric type of dyadic Green’s function ~$~) (R, R’)
.—

satisfies the following boundary conditions at the circular

cylindrical interfaces r = al (1 = 1,2, ..., L – 1)

? x G$q) = ; x @~+l)ql (5)

1
&xvx Epq) =--
PP

? x v x G~@+l)gl. (6)
1%+1

The magnetic fields Hp due to the excitation of electric

current source Jq can be found from Maxwell’s functions as

HP(R) =
- ///

V x @(~,~’) . Jq(~’) W’. (7)

v,

The solutions to the electromagnetic fields due to the

excitation of a magnetic currelnt distribution Mq can be easily

obtained by following the similar procedure as due to the

excitation of an electric current source Jq. Therefore, only

the electric type of dyadic Green’s function will be presented

in this paper.

III. GENERAL EXPRESSION OIF DYADIC GREEN’S FUNCTION

As mentioned above, several approaches may be employed

to construct the electromagnetic dyadic Green’s functions in

the stratified media. In this paper, we will use the vector wave

function expansion to derive the dyadic Green’s function in

the circular cylindrically L-layered medium.

From (1) and/or (2), we can obtain the scalar eigenfunctions

given by

@:V(h) = Zn(qr) ~~(n~) exp(ilw) (8)

where Zm (qr-) is a general cylinder function (including

.l~, N~, H$l), and Hr) ) of cwder n, and q the propagation

constant in r direction with lt2 = qz + h2. The vector

eigenfunctions can be constructed by

L:q(h) =Vr/O:, Jh) (9)

M:q(h) =V X [@q(h)2] (lo)

N:T(h) =;V x v x [+:q(h)q (11)

and the notation used here fo Uows that in [1]. The group of

equations given above can be written more explicitly using

(8) as

.

I+ihZn(qr) ~~(nfj); exp(ihz) (12)

exp(ihz) (13)
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(14)

For the geometry shown in Fig. 1, an incoming wave is

always totally reflected at the origin resulting in standing wave

so that there exist only two types of waves—standing wave
(1)

and outgoing wave, which can be represented by Jn and Hn ,

respectively. The vector wave functions in ( 12)–( 14) have been

verified [1] to be orthogonal among themselves as well as with

respect to each other, as they are integrated over all the values

of r, $, and z. The expansion of vector wave functions in

terms of Jn and l?$) functions has actual physical meaning

and is advantageous compared with the usual expansion in

orthogonal function pairs ( ,ln, N,, ) or (H~l), 17~2) ). We can

use those cylindrical vector wave functions to construct the

desired dyadic Green’s function.

According to the principle of scattering superposition, the

dyadic Green’s function can be considered as the superposition

of ~.. (~, ~’) (an unbounded DGF) and G&) (R, ~’) (a.

scattering DGF). ~eo (R, ~’) corresponds to the contribution

of the direct waves f~om radiation sources in the infinite homo-

geneous space and G&) (~, ~’) to the additional contribution

of the multiple reflection and transmission waves due to the

presence of dielectric interfaces. The complete dyadic Green’s

function, @’q) (R, ~’), is therefore given by

——
G$”) (R, z) = Geo(R R’)&; + G&) (R, R’) (15)

where the superscript (pq) denotes the layers in which the

field point R and source point ~’ locate, respectively, and the

subscript s means the scattering dyadic Green’s functions.

The dyadic Green’s function ~,. (R, ~’) in the unbounded

medium is given in Tai’s well-known book [1] by using the

contour integration in the complex q-plane as a result of the

residue theorem, as follows:

(16)

where simplified notations (throughout the paper) M e =

‘1:) =(I) = ~~1~ /), MI:q = ikf ’:q(-h), andhf,M:q(h), ilf. JL
07

M’ ‘1) (–h) s~;nd for the electric field of the TE mode, while
:V

N;T = N~Jb),N;; = N;; (h)> N’~n = N’~~(–h),

and N’ ‘1) – N’$l) (–h) represent that of the TM mode.e—

The pr;mve denote~~the coordinates (/, +’, z’) of the current

source J(~’), n identifies the eigenvalue parameter, and 60

the Kronecker delta function defined with respect to n. H~l)

should be chosen for Z. if vector wave function has the

superscript (1): otherwise, Jn should be chosen for Zn in the

expression of the cylindrical vector wave functions.

As discussed above, the electromagnetic fields in the geom-

etry we consider consist of the radial standing wave modes

and outgoing wave modes. It is this important feature that

facilitates greatly to simplify the eigenfunction expansion of

the new dyadic Green’s function by using the cylinder vector

‘1) functions.wave functions only in terms of J. and Hn

Assuming that the current source is located in the qth layer,

we may construct the scattering dyadic Green’s function for

the pth layer @ = 1,2, . . . . L) as follows:

where ~:d, , @d &d
and ~$~~)(p,q= I, z,..n(Ol)l n(l O)) ,L)

are the matrices of order 2 x 2 and stand for the coefficient

matrices of the scattering dyadic Green’s function to be solved.

The subscript n means that all of them are the functions with

respect to n, and the subscripts (00), (01), (10), and (11)

describe the characteristics that the left-side number and the

right-side number stand for the operation on the field and the

source coordinates, respectively. Moreover, the numbers O and

1 require that the Bessel and Hankel functions of the first kind,

Jn and il$), should be chosen for the cylinder function Z.

in the vector wave functions, respectively. The superscript T

denotes the transposition of matrices and L the number of the

layers of the cylindrical medium. Those coefficient matrices

of order 2 x 2 can be given more explicitly by

(18)

where all the elements in the matrices above stand for the

scattering coefficients of the scattering dyadic Green’s function

to be solved. The diagonal terms of the matrices above denote

the self-coupling of the wave. that is, TM to TM or TE to TE

coupling. But the off-diagonal terms of those matrices denote

the coupling from the TE to TM, and the TM to TE waves.

All the coefficient matrices of the dyadic Green’s function

can be defined from the boundary conditions given in (5) and

(6). In order to avoid more complicated operation, some con-

cepts of the effective plane wave reflection and transmission

are applied and extended for our problems. The final solutions

to those scattering coefficient matrices of the dyadic Green’s

function can be derived as follows:
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+ (7 – iip,p+l.ip,p-l)-l.ip,p+lti;
+(7F– RP,P-I “ ~p,p+l)-l~Tqp

~(T- ii,,,+,. fiq,q-l)-l“ fiq,q+lu(q - P)

(19)

‘!(%) = ‘P,P+I “ (~ – Rp,p–I “ ~p,p+l)–l “ ~qp

.(7 - iq,q_l +fi,,q+l)-l “ &lu(P - d

+ (7 – fip,p+l.Rp,p_l)-l.Zq,q+l

+ @ – %P,p-l“ RP,P+J1.Tqp

.(7 - i,,,-, “ iq,,+l)-lyl - P)

Z!&io) = (~– Z,p+l “ ip,p-l)-l . Tqp

.(7 - ag,q+l . iq,q-l)-lc@ - d

q,q_lii;

(20)

. .
+ @ – RP,P-I - &+l)-l “ &-1 “ f&J+l~;

+ RP,P–I . (~ – ~p,p+l - RP:P–I )-1 .+qp

.(7 - i,,,+, . %,,,-,)-1 “Rq,q+lu(q- P)

(21)

%!;l, = (~ – fip,p+l “ RP)P-l)-l . ~qp

. (T - fiq,q_l . iq,q+l)-l “%,q-lw - 9)

+ @ – i2p,p-1“RP,P+l)-l“~p,p-lq

+ i?p,p–l . (~ - fip,p+l . ZP,p-l)-l “ T,P

+(7 - fiq,q_l . iq,q+l)-7q9 - P) (22)

where the step function U(z) is defined by

(23)

~ and ~ are the generalized reflection and transmission

coefficient matrices, respectively, and can be derived by a set

of recursive formulations as follows:

~P,P–1 “ ~p,p–1 + ~p–I,p “ RP–I,P–2

. (~ - ~p_I,p . fip-I,p_Z)-l ~~p,p_I (24)

Rp,p+t =’ Rp,p+l + ~p+I,p . Rp+1,p+2

. . (~ – ~p+l,p . fip+I,p+2)-1 . ~p,p+l (25)

TIL =Z~L–l,L “ QL-2,L_1“““Q12 (26)
-.
~Ll G~~L,L_l “ QL–l,L–2“““Q21 (27)

Qp,p+I ‘= (~ – RP+I,P “ fip+1,p+2)-1 ~~p,p+l (28)

Qp,p_l “(7 – Rp-l,p “ ip_l,p_2)-1 . Tp,p_l (29)

where p = 1,2, ..-, L, Note that RL,L+l = O, and R1,O =

O. The R and ~ are the local reflection and transmission

coefficient matrices. At the pth interface of the medium, those

2 x 2 coefficient matrices are given by

Rp,p+l = [~n(qpap)~$)(~p+lup)

zl?(~P+l%)Jn(qpap)]-l

;[7%) (%+l%)w (%%)

—
a)] (30)H(1)(qpap)13i1) (~p+l Pn

~P+l,P = [~ JnPaP)J41)(%+laP)

— ms)(np+lap )Jm(qpap)]-l

“ [7n(qp+lap)Jn(vpap)

—
~rL(nPaP)4J(%+laP)l (31)

Tp,p+~ = *[~n(~pap)~J$)(np+lap)
‘~p ‘p

—77&1)(qp+lap)Jm(qpap) ]–1
6’4)

(32)

Tp+l,p = ~w [7n(npa1,)Hf) (vp+lap)
mP+laP

—tij$)(qp+lap )Jn(qpap)]-l

“(Ep+l o
0 –PP+l )

(33)

where al(l = 1,2, . . . , L – 1) denotes the radius of the .Jth

layer, and the ~n and En the 2 x 2 matrices defined in the

form as follows:

[

1 2ti6pqpT’B~(qp?-)
z. (qP?-) = ~

–nhl?n(qp?’)

–?thBn(qj.r) –~~Ppvp~%(%~) 1
(34)

where E&is either IIS) or J. depending on whether we are

defining the 11~) matrix or the ~m matrix, and the prime, the

derivative, operates with respect to the whole variable of the

relevant functions. Moreover, ~~n is diagonal when n = O.

So far, the general expressions of the scattering dyadic

Green’s functions for the cylindrical arbitrary multilayered

media with circular cross section have been obtained. In order

to show how to simplify the general expressions for some

specific cases, we will consider the dyadic Green’s functions

for the the case of axial symmetry (n = O), as well as two

specific geometries, i.e., two- and three-layered media that are

frequently employed to model the practical problems.

IV. SPECIFIC DGF’s FOR SEVERAL SPECIAL CASES

The general dyadic Green’s function in cylindrically multi-

layered media is given by (15), The mathematical expression

of unbounded DGF, ~.. (~, ~’ ), remains unchanged for the

layer where the source is located only if we replace the

propagation constant k and the radial propagation constant q in

(16) by those of the source layer. The dyadic Green’s functions
——

can be easily given if the scattering term ~~) (R, R’) is

obtained. Therefore, we consider only the scattering dyadic

Green’s functions, as well as their coefficients or coefficient

matrices, for those special cases.

A. The Case of Axial Symmetq~ (n = O)

From the fact that 13n is diagonal when n = O, we

can easily know that all the reflection and transmis-

sion matrices, ~, ~, ~ and ~;, are diagonal. Furthermore,
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equal to zero, This fact implies that the TM and TE waves

are decoupled. Therefore, TM and TE waves can be treated

independently of each other, implying a scalar problem. In

this case. the scattering dyadic Green’s function ~$g) in (17)

can be simplified as follows:

where the subscript NN and iklbl denote the scattering

coefficients of TM wave and TE wave, respectively. All the

scattering coefficients in (35) can be obtained from (19) to (22)

only by taking a set of replacements: ~ -+ 1, Rl ,J+l ~ R~l or

~~1,RJ,L–I + Rslor fi~l,~l,Z-I+ Tj?l or TFZ,T1)l+I +
T:l or 7’[, RZ)Z+l + R~l or R$l, Rl,l–1 ~ R~l or

Rj?t,~I,J-1 ~ T~l or T~l, Tt)t+l ~ Tgl or ~~1, (i =

1,2,. ... L), where the superscript E and H mean for TM

and TE waves, the subscript ~ and F mean the centripetal

and centrifugal reflection or transmission, respectively, and

the similar replacements are done from (24) to (33). All the

local reflection and transmission coefficients are given by

where fi~l = lZjl)(q~a~), Tl~l = ~~(1) (q~a~, Yw =

Jo(q~at),~~l = Jj(q~at), and p = 1,2,. ... L. RL,L+l =

~lo = O. Note that the prime operates with respect to the

whole variable of the relevant functions. From the group of

equations given above, we can easily obtain the scattering

coefficients of the dyadic Green’s function for the case of

axial symmetry.

B. Two Specific Geometries

In order to obtain the specific scattering DGF’s of the

cylindrically two-, and three-layered media, we only substitute

the special values of q and L into (17) and let p = 1,2, . ~., L,

respectively. At the same time, we consider, in particular, the

case of axial symmetry (n = O).

1) Cylindrically Two-Layered Media: The geometry of the

cylindrically two-layered media can be considered as a single

cylinder in an unbounded homogeneous medium. When the

current source is located in the different layer of the media,

we can obtain a different expression of the dyadic Green’s

function. Therefore. we should consider two cases of the

current source, which is located either in the first layer or

in the second layer.

a) Current source located inside the cylinder: In this case,

the scattering DGF can be simplified from (17) as follows:

5(11)_ _,
es @R)=&~:dh~$wd%ll

(44)

(40)

T;p

(41)

T;p

(42)

T;P

2i~P+lqp

(~qp+lap)(~p+lnpf i,+l,prjp – ‘PnP+lfPP~j+l,p)

(43)

.~lz . [N’gel, M’gql]T} (45)

where R12 and ~lz can be given by letting p = 1 in (30) and

(32) with q? = k? – h2 and k? = W2K,C,(1 = 1, 2).

When n = O, we can simplify (35) as

(46)

(38), (40), and (42) by letting p = 1.

b) Carrent source located outside the cylinder: If the source

is located outside the cylinder, the scattering DGF is given by

(48)
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. 7?21. pi;;, A4’Y]T} (49)

where ~21 and ~21 can be given by letting p = 1 in (31) and

(33), respectively. When n = O, (35) can be simplified as

=(22) _ _,

/
G.. (R, R ) = ; ‘m dh 2’260

(22) (1) ~’(l) ‘
x {DNNN:V,

—m 72 ; 72

where D$~ Z= R$l, D~~ = R~l, B~# = T~l, and

B~~ = T~l. R~~H and T~~H can be obtained from (37),

(39), (41), and (43) by letting p = 1.

2) Cylindrically Three-Lay&ed Media: The geometry of

the cylindrically three-layered medium is considered a single

cylinder with a coating layer superimposed by an unbounded

homogeneous medium. The current distribution can be located

in any one of the three layers, and the scattering DGF for

each layer is presented.

a) Current source lying inside the cylinder: In this case,

q = 1 and L .= 3. We can let p = 1, 2, or 3 to obtain the

scattering DGF in each layer from the general expression (17)

of the scattering DFG as follows:

=(11) _ _,

,.[: dh&#w@%lGe. (R, R ) ❑.:

. [N’:q,, M’:J} (53)

where fi12, R21., Z23, ?12, and ?13 is given from (24) to

(29). When n = O, the scattering DGF’s can be simplified

as follows:

=(11)_ _,

J
G.. (R, R)=~ ‘m

2–60

8~ .m
dh—— x {A$#N: ~,N’gq,

v:
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C$WJ . T;2 &2 _ T;z

1 – R:1R~2 ‘ ‘f~f – ~ – R:l R:2

D(32) _ T;2R;1 T~2 R;lD(32) _

‘N – 1 – R;lR~z’ ‘f~~ – 1 – R~lR$j
(62)

c) Current source lying outside the coated layer: When the

source is located outside the coated layer, the scattering DGF’s

for TL = O is given by

+13) _ _,

/
G,, (R, R)=~ ‘m dh~x

87r .m nl

+ B&M; v, M’;q, }

=(23) _ _,

/.

+Cc!

,, (R, R)=; _ dh~x

(63)

where

(64)

(65)

(66)

Up to now, all the scattering DGF’s for several specific

cases have been given in detail. The results for the specific

cases agree with those given by other researchers, showing

the validity of our new expression of DGF. Our expression,

however, is more general and can be applied to more compli-

cated problems with any number of cylindrically multilayered

lossless or lossy media.

V. CONCLUSION

As a very powerful and elegant method for solving the

boundary-value problems, the dyadic Green’s function tech-

nique has been well developed and employed for more than

two decades. As mentioned above, the dyadic Green’s function

for the planarly stratified media has been well investigated

by many researchers, and the general expressions of those

functions have been given in detail. The DGF’s for the

spherically stratified media have also been investigated, and

the general expressions have been presented recently. Al-

though several simple geometries of the cylindrically stratified

media extracted from practical engineering problems have

been investigated, it is very useful to construct the general for-

mulation of dyadic Green’s functions for arbitrary multilayered

cylindrical media.

In this paper, the general expression of the DGF for cylin-

drically multilayered media has been derived. Some concepts,

such as the effective reflection and transmission of plane

waves, are used and extended to derive the scattering coeffi-

cient matrices, Several specific cases, i.e., axial symmetry (n =

O). two-layered and three-layered media, are considered in

detail. Because of the duality and the superposition principle,

the magnetic type of DGF’s can been derived easily by

the replacements E ~ H, H a –E, J - M, M ~

– J, P ~ c, c ~ IL. Therefore, only the electric type of

dyadic Green’s functions are analyzed. In order to check the

general formulation we have derived. the scattering DGF’s

for several special cases have been obtained by simplifying

the general expression of DGF’s. The agreement between the

results for the specific cases derived in this paper and the ones

given by other researchers has demonstrated the validity of

our approach. However. our expression is more general and

can be applied to much more complicated problems. Our new

expression is more general and can be applied to problems

with any

media,
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